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COMPARISON OF TH~ RESULTS OF CLASSICAL DIFFUSION AND QUANTUM 

CALCULATIONS OF VIBRATIONAL--TRANSLATIONAL RELAXATION OF 

DIATOMIC MOLECULES 

M. N. Safaryan and O. V. Skrebkov UDC 539.196.5+536.45 

INTRODUCTION 

Starting with a numerical solution of the diffusion equation from [2], an investigation 
was performed in [i] of the vibrational relaxation of anharmonic oscillators in an inert gas 
medium, the relative effect of anharmonicity on the kinetics Of the distribution function and 
the mean energy was determined, the dependence of the relaxation of the mean energy of the 
system on its deviation from equilibrium at each instant was shown, etc. The question arises 
of how far the results in [i] are applicable to quantum systems, and, more generally, what 
are the limits of applicability of the classical diffusion calculation. A quantitative an- 
swer to this question requires a step-by-step comparison with the corresponding quantum-me- 
chanical calculation. We performsucha comparison in the present paper (cf. [3])~ 

We use the following notation: e, vibrational energy; e=, energy corresponding to the 
. . . . .  & " O i-th vlbratlonal level; f(c, t) dlstrlbutlon function; fi(t), population of i-th level; f 

and f?, equilibrium values at temperature T~ T, temperature of thermostat; To, initial vi- 
brational temperature; ~(t), mean energy; Co, energy at zero time; T:, vibrational relaxa- 
tion time of harmonic oscillators; mo, ~, and D, fundamental frequency, reduced mass, and dis- 
sociation energy of oscillator; N, number of levels of quantum oscillator; to, adiabaticity 
parameter; to = (mo=/U)~[~-k-T, where M is the reduced mass of the oscillator and particles 
of the thermostat, and u is the parameter of the intermolecular interaction potential; F(t), 
force acting on oscillator in a collision; Pik, probability of transition of oscillator from 
i-th to k-th level per unit time; a = D/kT; ao = D/kTo; mik = (i/h) le i -- ekl, T = t/T,; 

= f/fo; ~i = fi/f~; x = e/D; 8 = ~m/kT; 8o =~m/kTo. 

i. Statement of the Problem. Initial Equations. 

It is well known that classical and quantum-mechanical methods of calculation are equiv- 
alent if 

Omax= ~o/~min<<i, (i.I) 

where Tmi n is the smaller of the values of T and To. This condition is sufficient, but it 
may or may not be necessary for the determination of a number of kinetic characteristics. Ac- 
tually, another quantity determining the possibility of applying the classical method of cal- 
culation to quantum systems is the time of the kinetic process. It is known that a Fokker- 
Planck type of equation for an initial distribution function with large spatial derivatives 
does not give a correct description at times which are very short in comparison with the re- 
laxation time, but starting from a certain instant the size of the initial gradient is of no 
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importance in determining the applicability of this equation. On the other hand, if we are 
not interested in the near-equilibrium state of the system for initially highly excited oscil- 
lators, but for To << T, on the contrary, in earlier times, then instead of Eq. (i.l), we can 
take 

0 ( t )  ~ ~ o % ( t )  << I, 0 (t) < Oma,, ( i .  2) 

where r is the mean energy of an oscillator at times of interest to ,us; the times for 
which (1.2) is satisfied can be estimated by using the approximate relation ~(t) = e L -- (e-'e-- 

~o)e -t]rv, where T v is the vibrational relaxation time of the oscillators and E L is the equi- 

librium value of e(t); e e = g as t + ~. This less stringent condition than (i.i) arises from 
,the fact that the range of significant variation of the kinetic characteristics of ~, ~ 
e(t); i.e., the scale of the problem, depends on the time. These qualitative arguments favor 
a wider range of applicability of the classical method of calculation than follows from (i.i). 

In �9 to find out the maximum value of 0 and the specific times for which the results 
of the classical description of the process can be used, it is necessary, as already noted, 
to perform a step-by-step comparison with the corresponding quantum-mechanical calculation. 
The classical and quantmn-mechanical calculations of the kinetics of the process to be com- 
pared must be based on equivalent assumptions of the nature of�9 interaction of the oscil- 
lators with the thermostat) the initial equations which satisfy this requirement are written 
down below. 

In the classical description of the kinetics of the process an equation of the diffusion 
type from [2] was used in the form (cf. [i, 2] for more details) 

7F= ~-,- 'g/  ~ ' 8  r~ ,at- /o_g~., (1.3) 

where 

t IG.ol ~ ~>, (1.4) 

F n and Fh.o. are the Fourier components of the force for frequencies ~ and mo, respectively, 

the r n are the Fourier components of the unperturbed vibrational motion r(t) of the oscilla- 
tor, the symbol <--.> denotes an average over all the impact parameters, and To is the mean 
free time of the molecules. 

The quantum-mechanical calculation requires solving the balance equations 

�9 ( = , ) + N 
~./ -- f+ ~ P+i+ + "~ P ih ' ~ t  fk P~+ + § z~ .f h Pk +, i, 1,2, 

k ~ i  - ' ~ ~ ... k = i +  t h=O h=i.-}- t 
(i.5) 

In the problem under consideration, the Pik are the semiclassical values obtained by 
treating the translational motion classically and the vibrational motion quantum mechanical- 
ly. These values are obtained in first-order perturbation theory for an intermolecular in- 
teraction potential which is linear in r (cf. [4]) and can be written in the form 

�9 P ' "  = +o~ < P ' ~ > '  < P ' ~ >  = I r ,~  I ~  <1 &,, I~>, 

where the rik are the matrix elements of the unperturbed oscillator, the Fik are the Fourier 
components of the force for the frequency ~ik, and the value of F(t) is the same as in (1.4). 

By analogy with (1.3), we write Pik in the form 

Pi.~ = "~o (Pio> T I ri~ ff'ik, $r'i~ = ~ .  ( 1 . 6 )  

Equations (1.5) taking account of (1.6) are the quantum-mechanical analog of Eqs. (1.3) 
and (1.4). The assumptions on which the calculations of the diffusion coefficient B and the 
probabilities Pik are based agree completely. The results of the calculation of the kinetics 
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of the process obtained in [i] must be compared with the solution of Eqs. (1.5) and (1.6). 

For a weak interaction the terms taking account of transitions i § k with k # i • i are 
not controlling, and for an adiabatic interaction (to >> i) they can be completely neglected. 
On the other hand, when ~o >> I one should expect the greatest difference between the clas- 
sical and quantum-mechanical calculations, since in this ease, as a rule, 0 ~ i. One-quan- 
tum transitions imply neglecting all terms with n > i in the diffusion coefficient B in the 
classical equations (1.3). For 0 << i the system of equations which follows from (1.5) tak- 
ing account of (1.6) for Pik = 0 must go over into the corresponding differential equation 

�9 @ O _ 

when i # k + i. This transition gives a relation between P1o and N~. Usmng fi+~/fi -(1.5) 
Pi+~,i/Pi, i+x and the approximation mi+.,i _~ mi, i-" = mi, we have the following from 

for k = i + i: 

/ 1~ ALi--t~], A~+I. i A~ = A i + i -  A~; 
g-7 ~' 7i- -- ~ + i  

(1.7) 

(1.8) 

For 0 << i we have 

( G = [ ~(~) d~/ ~ e-~Uhr )" 

and (1.7) goes over into the equation 

/ ~ = o T (~/~ ~-~[~ (~ = ~)  
(1.9) 

A comparison of (1.9) and (1.3), where n = i, shows that 

~1 =~-~-F1o t -  exp(--O) (~-~qu 

where (~1)qu is the vibrational relaxation time of the quantum harmonic oscillators. 

The quantity TI in our calculations serves as a time scale of the kinetic process; in 
the classical calculation it corresponds to the relaxation time of the classical harmonic 
oscillators (T~)cl = n~ ~ and in the quantum-mechanical calculation to the relaxation time of 
quantum harmonic oscillators (T~)qu. From now on we omit the subscripts cl and qu, The 
quantities (T1)cl and (T1)qu agree if 0/2 << i, which follows from i -- (i -- exp (-~))/0 << i, 

Quantities characterizing the relative effect of anharmonicity of the vibrations were 
_investigated in [i]. Anharmonicity is important for relatively high values of T and To (or 
Eo); processes in which a = D/kT ~ 50 were considered in [i], and for the most part this con- 
dition is retained here. We note that for thermostat temperatures corresponding to a ~ 50, 
0 ~ 4 for all diatomic molecules, while for 02, N2, NO, CO, Bra, 12, and C12, 0 ~ I. 

2. Comparison of Calculated Results for One-Quantum Transitions (to >> i). 

We present below the results of a specific comparison of the solutions of Eq. (1.3), in 
which only terms with n = i are taken into account, and system (1.5) for k = i + i. From now 
on we use the same values for F n and F(t) as in [i, 2]; a molecule is also modeled by a Morse 
oscillator. 

Relaxation of Distribution Function. We consider first an initial Boltzmann distribu- 
tion with temperature To, 

/ (x, O) = ~ exp (-- a_~) ( 2 . 1 )  

where the constant C is determined from the normalization condition. 
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A comparison* of the solution ~ of Eq. (1.3) for n = i and solution ~i of (1.4) with 
k = i • i for the deactivation process (co = 7, a = 40) for various values of 8 showed that 
for 8 ~ i, @and~i agree within 10-20%. For 8 = 4, ~ and~i differ at most by about a fac- 
tor of 3 at early times (T ~ 0.2), but for T ~ 1 the difference becomes negligible. 

The values of (~/~h.o.)qu and (~/~h.o.)cl (~/~h.o. --f/fh.o. ) characterizing the rela- 

tive effect of anharmonicity in the quantum (8 = i and 4) and classical cases are shown in 
Fig. I for the thermal deactivation process: ao = 7, a = 40, and ~o = 30. The solid curves 
are for the classical calculation and the open curves for the quantum calculation. For sys- 
tems satisfying the condition 8 ~ 1 the calculated values of ~/~h.o.' where ~h.o. is the dis- 

tribution function of harmonic oscillators relative to the equilibrium value, are practically 
the same as the corresponding results of the quantum treatment. For systems with a large 
vibrational quantum (8 = 4) the latter applies only to times less than the relaxation time 
(T < i). For T ~ i, (~/~h.o.)qu and (~/~h.o.)cl differ by as much as two orders of magni- 

tude at the upper levels as a result of the difference between (~h.o.)qu and (~h.o.)cl. There 

are known analytic solutions for the last two quantities. 

Generalizing these results one can say that in the initial stage of the deactivation 
process (T < I) the ratio (~/~h.o.)is insensitive to the valueof~0/kT~ At later stages 

of the process which are closer to equilibrium (T ~ i), this applies to the value of ~, the 
classical analog of ~ i = fi/f; �9 

The results of the classical and quantum-mechanical calculations of ~/~h.o. and ~ agree 

for the excitation of vibrations (T > To) as well as for deactivation over the whole relaxa- 
tion process if 8o ~ i. Figure 2 shows (~/qh.o.)cl and (~/~h.o.)qu during the excitation of 

vibrations (Co = 40, a = i0, and Go = 20). The solid curves denote the classical calculation 
and the quantum calculation for 8o = I; the dashed curves denote the quantum calculation for 
eo = 4. It is clear that these quantities practically coincide during the whole relaxation 
process; their difference at the upper levels (x > 0.6) in the initial stage of the process 
can be ignored because of the low population of these levels at the beginning of the excita- 
tion process. A comparison of ~ and~i for the excitation process for 8o = 4 showed that 
they agree only for times T ~ i. 

For an initial inverse distribution of the form 

f(x, O) = C exp (--p(x-- xm)2), p>> i (2.2) 

the classical treatment also adequately describes the relaxation of the distribution function 
in energy regions where the excited energy levels have substantial populations. In the ini- 
tial stage of the process this is x~x m. Figure 3 shows ~ (x, T) in the thermal deactivation 
of the initial inverse distribution (2.2), a = 40, x m = 0.35, and Go = 30. 

�9 For the distribution functions the comparison was performed for e = E i =~oi(l -- i/2N). 
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Relaxation of the Mean Vibrational Energy. The relative effect of anharmonicity on the 
characteristic relaxation time of the mean energy of the oscillators is characterized by a 
quantity g [i] given by 

g ( x )  = "d  In [~o - -  ~p) l (~( 'c )  - -  T",,) I. 

A quantitative comparison of gel and gqu showed that for systPm~ satisfying the condi- 

tion 0 or 0o ~ Ip the classical result for g agrees rather closely with the quantum value: 
(gcl -- gqu)/gqu < 0.I. For systems with a large vibrational quantum the difference between 

gcl and gqu can be more substantial: For 0 ffi 4 it amounts to a factor of 1.5 increase in the 

effect of anharmonieity. For the deactivation of vibrations, however, the latter applies 
only for times x > i; for the initial stage (T ~ 0.5) for 0 ffi 4 and for sufficiently high 
To (Co ~ I0) the values of gcl and gqu agree within'~10%. This is in qualitative agreement 
with (1.2). 

The practically interesting and experimentally measurable quantity is the ratio of the 
characteristic times of excitation T a and deactivation T d of vibrations. The classical and 
quantum values of Ta/T d for 8 or Oo = 4 differ by no more than 15-20%. 

3. Finite-Difference Diffusion Equation when Other Than One-Quantum Transitions Are Taken 
into Account 

Equation (i. 7) for ~o >> 1 is actually a finite-difference diffusion equation without 
restrictions on the value of O; it is equivalent to the system of quantum equations (1.5) 
for Pik = 0 if n = li- k I > i. 

This equation corresponds to taking account of only the term with n = 1 in the coeffi- 
cient B; from the direct analogy of rik with r n and Fik with F n [of. (1.6) with the terms of 
the sum in (i. 3)], it can be seen that the successive terms correspond to the contribution 
of multiquantum transitions to the coefficient B. These terms are smaller than the first, 
but taking them into account for interactions which are not adiabatic or only weakly so (~o 
5) has an appreciable effect on the relaxation of the distribution function of highly excited 
oscillators. On the other hand, under certain assumptions an equation can be derived which 
is similar to (1.7) and takes account of multiquantum transitions. We reduce (1.5) to the 
form 

N - - i  0 
,,o d~Pi (o2 f i+n A~+n,~P 
,i  ~ = ~ Pi+n,i i + n , i ~  ~.n., n=t iq-n, i  O)'-.U " 

by using the assumptions 

n 2 /i h i , ~ - . ~  
l~ i ' i - - n ~ i , i - - n  O:t.~'- ~ " 

n = l  �9 t ,~- -n  (g i , i - -n  

A~p = % - - % ,  n = l i - - k ] ,  

<<N, (~i+ n, i ~-- nOi+ I, i; 

/io_t_n o Ai+n,i~.~ ]~+l  h i + l . i @  
hOi..~-n,i ~o iJcn , i  - - h o / ~ _ i , i  hoi+l . "  

h(oi,i_n h~i,i_ n -- hoi,i_ i/~ml,i._ t 

(3.1) 

(3.2) 

(3.3) 
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By using (3.3), Eq. (3.1) can be transformed into an equation of the (1.7) type, in which 
Eq. (1.8) for the diffusion coefficient is replaced by 

B (8:) ~ (/~oh,i_t) 2 ~] n2Pi,~_n. (3.4) 

When (3.4) is used, Eq. (1.7) goes over into (1.3) in the limit 8 << I. For any values 
of 8, Eq. (1.7) is a finite-difference diffusion equation with B given by (3.4). The accur- 
acy with which this equation takes account of multiquantum transitions depends on the value 
of 8, and calculations show that for (1.7) to be applicable with B given by (3.4), the re- 
strictions (3.2) must be supplemented by the condition 8 ~ i. 

Equation (1.7) with B given by (3.4) agrees formally with (1.5) for k = i • i if the 
probability of one-quantum transitions is taken as the effective value 

(Pi,i-Oeff----- ~ n~Pl, i-n, (3.5) 
TI 

permitting multiquantum transitions to be taken into account approximately in the one-quantum 
calculational scheme.* 

Later we shall compare the solution of (1.5) with that of (1.7) combined with (3.4) [or 
the solution of (1.5) and that of (1.5) combined with (3.5)] and estimate the effect of multi- 
quantum transitions for various values of to following from the exact solution of Eqs. (1.5). 

The ratio of the distribution function for the deactivation of distribution (2.1) calcu- 
lated by taking account of multiquantum transitions (fn~z) and the distribution function cal- 
culated by assuming only one-quantum transitions (fn=,) (ao = 7, a = 40, N = 80, and ~o = 2) 
is denoted by ~(x, T) and plotted in Fig. 4. The solid curves were calculated by Eqs. (1.5) 
and the open curves by Eqs. (1.7) combined with (3.4). For 8 = i the solution which takes ac- 
count of the effect of multiquantum transitions by the approximate model -- (1.7) combined 
with (3.4) or (1.5) with Ik - i[ = i combined with (3.5) -- is in good agreement with the cor- 
responding exact solution of Eqs. (1.5) for Ik -- i I Z i. A similar conclusion holds for to = 
0 and 4; the corresponding graphs are omitted. ~ 

A comparison of the exact and approximate methods of taking account of the effect of 
multiquantum transitions for ~o E i and 8 ~ I in calculating the relaxation of an initial 
Boltzmann distribution (of. Fig. 4) shows that the results can be transferred to the relaxa- 
tion of an initial inverse distribution of the type (2.2). It should be noted here that the 
results of this comparison are only weakly dependent on the characteristic width of the in" 
verse distribution ~ = i/2/~ in the range 0.025 ~ ~ ~ 0.15 investigated. Figure 5 shows 
u = f(x i, ~)/f(x m, T) for to = 2 and 8 = i for the deactivation of distribution (2.2) 
with x m = 0.506 (m = 24), a = 40, and various values of ~: i) ~ = 0.15, p = 22.2; 2) 6 = 0.i, 
p = 50; 3)~ = 0.5.10 -I , p = 200; 4) 6 = 0.25"10 -I , p = 800. These values characterize the 
change of the relative population with time for three fixed values of xi: x i < Xm, x i = Xm, 

x i > Xm(16 E i E 32); a) x i = 0.358, i = 16; b) x i = Xm = 0.506, i = m = 24; c) x i = 0.635, 

i = 32. In this energy range the effect of multiquantum transitions is~relatively small (cf. 
Fig. 4), and the diffusion model -- (1.7) combined with (3.4) (dashed-dot curves) -- correctly 
takes this effect into account. The solid curves correspond to the exact calculation and the 
dashed curves to the one-quantum calculation. Figure 5 also illustrates the dependence of 
the kinetics of the deactivation of the inverse distribution (2.2) on its width: For large 

*The method of approximating the effect of multiquantum transitions in the one-quantum calcu- 
lational scheme by replacing Pi,i-* by (Pi i -z)o~ was used also in [5] to treat the distribu- 
tion of atoms over excited states. Problems of~the diffusion description of the kinetics of 
a low-temperature plasma have been discussed in many papers (cf. L. M. Biberman et al., "The 
theory of a nonequilibrium low-temperature plasma," in: The MHD Method of Obtaining Electri- 
cal Energy [in Russian], Energiya, Moscow (1968). 
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the distribution is compressed and, consequently, the peak is increased, while for small 
the peak is simply eroded. 

We note that for ~o ~ i, quite a different picture is observed in a comparison of @(x, 
T) and ~i(T) found from the exact [system (1.5)] and approximate [Eq. (1.7) combined with 
(3.4) ] calculations if 8 = 4 (a = 40 and N = 20). In this case (8 = 4) the effect of multi- 
quantum transitions is taken into account by the diffusion model [(1.7) combined with (3.4)] 
approximately correctly only for highly excited states of the oscillators (x i ~ 0.7); in the 
rest of the range of excitation energies the values of (fn>, -- fn=1) obtained in the exact 
and approximate calculations have different signs. 

Figure 6 illustrates the effect of multiquantum transitions on the relaxation of the 
distribution function in the deactivation process for e = i, N = 80, do = 7, and (z = 40 for 
various values of the adiabaticity parameter to calculated with the diffusion equation (i. 7) 
combined with (3.4). The figure shows 0i(T) found from a numerical solution of system (1.5) 
for k = i +_ i with the probabilities (3.5), or (1.7) combined with (3.4), which is equiva- 
lent. Calculations show that the corresponding quantity @(x, T) obtained in the classical 
approximation, i.e., the ratio of f(x, T) calculated with B = Z B n to f(x, T) calculated with 

n 

B = B,, practically agrees with the results shown in Fig. 6. 

It can be seen from Fig. 6 that taking account of multiquantum transitions leads to a 
decrease in fi(T) (acceleration of the deactivation process) for high excitation energies. 
As might be expected, the overall effect of multiquantum transitions increases with a de- 
crease in to, and the energy range of this effect is broadened. But the maximum effect of 
multiquantum transitions for small Go (up to several orders of magnitude for fi at the upper 
levels) is observed for T 2 i, i.e., at times for which the populations of excited vibration- 
al states are small. As a result, the transitions i -> i + n (n > i) have little effect on 
the relaxation of the average energy. It should be noted that the estimate of the effect of 
multiquantum transitions given above is valid within the framework of the calculational model, 
i.e., first-order perturbation theory calculation of the interaction. It is known that such 
a calculation gives somewhat too low values of the multiquantum transition probabilities, 
and, therefore, our results are somewhat of an underestimate. 

The physical parameter determining the vibrational kinetics is the adiabaticity parame- 
ter ~o, and the conditions for the applicability of the diffusion description depend on the 
parameter 8. For real systems in the range e ~ 1 the nature of the interaction can vary from 
adiabatic (to >> i) to nonadiabatic (to << i). 

As a result of the calculations performed we note that to estimate the applicability of 
the diffusion description of the vibrational kinetics of anharmonic oscillators it is neces- 
sary to replace the condition "much less than unity" in (i.i) by "less than and of the order 
of unity." In an adiabatic interaction (to > 5) the results of the classical calculation for 
the relative valxes of the distribution function with respect to the value for harmonic oscil- 
lators for times t < T, and to the equilibrium value for t > TI can be carried over to quan- 
tum systems practically without restrictions on the value of h,.~0/kT. The transfer of t~e re- 
sults of the classical calculationof the kinetics to quantum systems must be performed in the 
time scale of ~,, (T,)cl # (T,)qu; the energy s is measured from the zero level. For ~o _< 5 
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the effect of multiquantum transitions can be taken into account with adequate accuracy in 
the diffusion calculation over the whole range of ~ if h~o/kT ~ I. 
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